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When you’re writing a ray tracer, soon or late you’ll stumble on the problem of re-
flection and refraction. When you want to visualize mirror-like objects, you need to
reflect our viewing ray. To simulate a lens, you need refraction. While most people
have heard of the law of reflection[1] and Snell’s law[2], they often have difficulties
how to actually calculate the direction vectors of the reflected and refracted rays. And
when googling around for info, you find a lot of theory but only a little of practice. In
this tutorial, I’ll try to show you how to apply the theory in practice.

In the first section, we’ll describe the setup. We’ll name the used variables and put some
conditions on them. In the two sections following on that, we’ll derive equations for
the reflected and refracted direction vectors based on the law of reflection and Snell’s
law. I know it’s a bit of theory, but it isn’t too hard. If you’re a bit scared, you can skip
to the conclusions though.

1 The Beginnings

In Figure 1 we have an interface (= surface) between two materials with different in-
dexes of refractionη1 andη2. These two materials could be air (η ≈ 1) and water
(20◦C: η ≈ 1.33). It does not matter which ofη1 andη2 is the greater one.η1 could
be air andη2 water, or vice versa. All that counts is thatη1 is the index of refraction
of the material you come from, andη2 of the material you go to (in case of refraction).
This is a very important concept and sometimes misunderstood.

The direction vector of the incident ray (= incoming ray) is−→i , and we assume this
vector is normalized. The direction vectors of the reflected and transmitted rays are−→r
and−→t and will be calculated in this tutorial. These vectors are (or will be) normalized
as well. We also have the normal vector−→n , orthogonal to the interface and points
towards the first materialη1. Again,−→n is normalized.

∣∣−→i ∣∣ = |−→r |=
∣∣−→t ∣∣ = |−→n |= 1 (1)

The direction vectors of the rays can be split in components orthogonal and parallel to
the interface. We call these the normal part−→v⊥ and the tangent part−→v‖ of a vector−→v
(in this paragraph I’ll use the generic vector−→v , but the story really is for−→i , −→r and
−→t ). The normal part−→v⊥ can be found by orthogonal projection[3] on−→n . Taking in
account (1), this is:
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Figure 1: the situation
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−→v⊥ =
−→v ·−→n
|−→n |2

−→n = (−→v ·−→n )−→n (2)

The tangent part−→v‖ is the difference between−→v and−→v⊥:

−→v‖ =−→v −−→v⊥ (3)

The dot product between−→v‖ and−→v⊥ is zero:

−→v‖ ·−→v⊥ = −→v ·−→v⊥−−→v⊥ ·−→v⊥
= −→v · (−→v ·−→n )−→n − (−→v ·−→n )2−→n ·−→n
= (−→v ·−→n )2− (−→v ·−→n )2 |−→n |2
= 0

(4)

That proves two things:−→v⊥ and−→v‖ are orthogonal, and−→v⊥ is indeed an orthogonal
projection on−→n .

−→v⊥ ⊥−→v‖ (5)

Hence, we can apply Pythagoras:

|−→v |2 =
∣∣−→v‖ ∣∣2 + |−→v⊥|2 (6)

Furthemore, all normal parts are parallel to each other and−→n . The tangent parts are
parallel as well.

−→i⊥ ‖ −→r⊥ ‖ −→t⊥ ‖ −→n (7)

−→i‖ ‖ −→r‖ ‖ −→t‖ (8)

The angles of incidence, reflection and refraction areθi , θr andθt and they are the
smallest positive angles between the respective rays and the normal vector−→n . Basic
trigonometry and equations (1) and (5) tell us for any of this anglesθ the following
properties apply:

cosθ =
|−→v⊥|
|−→v |

= |−→v⊥| (9)

sinθ =

∣∣−→v‖ ∣∣
|−→v |

=
∣∣−→v‖ ∣∣ (10)

In fact, (9) says nothing else than1:

cosθ =±−→v ·−→n (11)

Now we had all that, we can start with thefunstuff.
1The used sign in (11) depends on the relative orientation of−→v and−→n .
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2 Reflection

We start with the easiest of both problems: the calculation of the reflected ray. In case
of specular reflection, this is very easy: the law of reflection says that the angle of
incidenceθi is equal to the angle of reflectionθr [1].

θr = θi (12)

Using equations (9) and (10), this law tells us:

|−→r⊥|= cosθr = cosθi =
∣∣−→i⊥∣∣ (13)

∣∣−→r‖ ∣∣ = sinθr = sinθi =
∣∣−→i‖ ∣∣ (14)

Because of (7) and (8) and Figure 1, we can figure out that both parts are:

−→r⊥ =−−→i⊥ (15)

−→r‖ =−→i‖ (16)

After summation, we get the desired direction of reflection:

−→r =−→r‖ +−→r⊥ =−→i‖ −
−→i⊥ (17)

By using equations (2) and (3), we can work this out to:

−→r = −→i‖ −
−→i⊥

=
[−→i − (−→i ·−→n )−→n ]

−
(−→i ·−→n )−→n

= −→i −2
(−→i ·−→n )−→n (18)

That’s it! But can we be sure−→r calculated in (18) is normalized as requested? Yes,
using (6), (13), (14) and (1) we have:

|−→r |2 =
∣∣−→r‖ ∣∣2 + |−→r⊥|2 =

∣∣−→i‖ ∣∣2 +
∣∣−→i⊥∣∣2 =

∣∣−→i ∣∣2 = 1 (19)

And that’s very cool, since we can avoid a costly normalisation because of this.

3 Refraction

The calculation of the refracted ray starts with Snell’s law [2] which tells that the prod-
ucts of the index of refraction and sines of the angles must be equal:

η1sinθi = η2sinθt (20)
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You can write this as:
sinθt =

η1

η2
sinθi (21)

With this equation you can already see there will be a bit of a problem if sinθ1 > η2
η1

.
If that’s the case, sinθ2 would have to be greater than 1. BANG! That’s not possible.
What we have here istotal internal reflectionor TIR. What exactly this TIR is will be
addressed later. For now, we’ll just add a condition to our law:

sinθt =
η1

η2
sinθi ⇔ sinθi ≤

η2

η1
(22)

In what follows, we’ll assume this condition is fullfilled, so we don’t have to worry
about it.

Fine, now we know the theory, we should try to find a formula for−→t . This first thing
we’ll do is to split it up in a tangent and normal part:

−→t =−→t‖ +−→t⊥ (23)

Of both parts, we’ll do−→t‖ first, because Snell’s law tells us something about sines, and
the norms of the tangent parts happen to be equal to sines. Hence, because of 10 and
22, we can write:

∣∣−→t‖ ∣∣ =
η1

η2

∣∣−→i‖ ∣∣ (24)

Since−→t‖ and−→i‖ are parallel and point in the same direction, this becomes:

−→t‖ =
η1

η2

−→i‖ =
η1

η2

[−→i −cosθi
−→n

]
(25)

Don’t worry about the cosθi , later on it will make things easier if we just leave it there.
If you need it, you can easily calculate it with (11), it equals−→i ·−→n .

Great, so we have one part already (it’s not that bad, is it? ;-) Now the other one, and
that’s quite simple if you use Pythagoras (6) and the knowledge that we’re dealing with
normalized vectors (1):

−→t⊥ =−
√

1−
∣∣−→t‖ ∣∣2−→n (26)

Now we have both parts. It’s time to substitute (25) and (26) in (23) to get the refracted
direction vector. If we do that and we regroup a little so we get only one term in−→n , we
get (hold on!):

−→t =
η1

η2

−→i −
(

η1

η2
cosθi +

√
1−

∣∣−→t‖ ∣∣2)−→n (27)

It’s a bit unfortunate we still need−→t‖ under the square root. Luckely, we don’t really
need the vector−→t‖ , but its norm. And this norm equals to sinθt (10). We get:
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−→t =
η1

η2

−→i −
(

η1

η2
cosθi +

√
1−sin2

θt

)
−→n (28)

Now instead, we need sin2
θt , but we know that’s given by Snell’s law (20):

sin2
θt =

(
η1

η2

)2

sin2
θi =

(
η1

η2

)2(
1−cos2 θi

)
(29)

The last two equations are all we need to calculate the refracted direction vector.

4 Total Internal Reflection

If we take a closer look to equation (28), you will notice it’s only valid if the value under
the square root isn’t negative. At first glance, that seems to be a second condition next
to the one in Snell’s law (22). However, that changes if you take a closer look to what
thisnewcondition means:

1−sin2
θt ≥ 0 (30)

That’s exactly the same als the original condition:

sin2
θt ≤ 1 (31)

Isn’t this beautiful? In two completely different situations, we have noticed restrictions
on the equations: the value of a sine that shouldn’t be greater than one, and the value
under a square root that shouldn’t be negative. And yet, it turns out they’re one and the
same.

Anyway, if this condition is not fullfilled, we can’t find a refracted direction vector.
That means we can’t do transmission:if the condition isn’t fullfilled, there’s no trans-
mission.

Why exactly is this calledtotal internal reflection, and why is it called a reflection while
it’s a restriction for refraction? First of all, it can only happen if you go from a denser
material to a less dense material (e.g. from glass to air). This is because sinθt can
only become greater than one ifη1

η2
> 1. In other words: it can only happen if you’re

insidea denser material. Hence the internal. Secondly, physics says that each photon
(= a packet of light) that arrives at the interface, but go through it (= transmission) or
be reflected. Well, it can be absorbed too, but let’s ignore that :-). If no photons can
go through because the condition in Snell’s law isn’t fullfilled, then they all must be
reflected: total reflection. Together, this givestotal internal reflection.
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5 Conclusion

By now, we have derived two equations to calculate the reflected and refracted direction
vectors by using vector arithmetic only. Here they are again:

−→r = −→i −2cosθi
−→n

−→t =
η1

η2

−→i −
(

η1

η2
cosθi +

√
1−sin2

θt

)
−→n

with

cosθi = −→i ·−→n

sin2
θt =

(
η1

η2

)2(
1−cos2 θi

)
In case of refraction, there’s a condition that limits the range of incoming anglesθi .
Outside this range, the refracted direction vector does not exists. Hence, there’s no
transmission. This is calledtotal internal reflection. The condition is:

sin2
θt ≤ 1

Algorithm 1 the code

Vector reflect(const Vector& normal, const Vector& incident)

{

const double cosI = dot(normal, incident);

return incident - 2 * cosI * normal;

}

Vector refract(const Vector& normal, const Vector& incident,

double n1, double n2)

{

const double n = n1 / n2;

const double cosI = dot(normal, incident);

const double sinT2 = n * n * (1.0 - cosI * cosI);

if (sinT2 > 1.0)

{

return Vector::invalid;

}

return n * incident - (n + sqrt(1.0 - sinT2)) * normal;

}
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